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ABSTRACT 10 
 11 
The analysis of two-way interactions in linear models is common in the fields of ecology and 12 
evolution, being often present in allometric, macroevolutionary, and experimental studies, among 13 
others. However, the interpretation of significant interactions can be incomplete when limited to 14 
the examination of model coefficients and significance tests. The Johnson-Neyman technique 15 
represents a step forward in the interpretation of significant two-way interactions, allowing the 16 
user to examine how changes in the moderator variable, it being categorical or continuous, affect 17 
the significance of the relationship between the dependent variable and the predictor. Despite its 18 
implementation in several software since its initial development, the available options to perform 19 
the method lack certain functionality aspects, including the visualization of regions of non-20 
significance when the moderator is categorical, the implementation of phylogenetic corrections, 21 
and more intuitive graphical outputs. Here I present the R package JNplots, which aims to fill 22 
gaps left by previous software regarding the calculation and visualization of regions of non-23 
significance when fitting two-way interaction models. JNplots includes two basic functions 24 
which allow the user to investigate different types of interaction models, including cases where 25 
the moderator variable is categorical or continuous. The user can also specify whether the model 26 
to explore should be phylogenetically informed and choose a particular phylogenetic correlation 27 
structure to be used. Finally, the functions of JNplots produce plots that are largely customizable 28 
and allow a more intuitive interpretation of the interaction term. Here I provide a walkthrough on 29 
the use of JNplots using three different examples based on empirical data, each representing a 30 
different common scenario in which the package can be useful. Additionally, I present the 31 
different customization options for the graphical outputs of JNplots.  32 
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INTRODUCTION 33 
 34 
The analysis of two-way interactions in linear models (i.e., models of the form: dependent 35 
variable ~ predictor * moderator) is common in the fields of ecology and evolution (Hilborn and 36 
Stearns, 1982; Dochtermann and Jenkins, 2011; Spake et al., 2023). For example, one might be 37 
interested in the interaction between sex and size when examining the ontogenetic allometry of a 38 
trait in a population or species (do males and females of a given species show different 39 
allometries?). Macroevolutionary studies also necessitate the analysis of interactions. For 40 
instance, one could be interested in testing whether a set of species follows Bergmann’s rule (i.e., 41 
a positive association between body size and latitude; Bergmann, 1847), but also whether this 42 
hypothetical relationship changes depending on the degree of precipitation these species 43 
experience (do different levels of precipitation affect the relationship between latitude and size 44 
across species?). 45 
 46 
These two examples illustrate four different characteristics of models in ecology and 47 
evolutionary biology that may involve two-way interactions. First, the moderator (which is an 48 
independent variable that modulates the effect the predictor has on the dependent variable) can 49 
be (1) categorical (e.g., sex) or (2) continuous (e.g., precipitation). Next, an interaction analysis 50 
can be (3) phylogenetically-independent (e.g., the comparison of the ontogenetic allometry of 51 
males and females of the same species) or can be (4) phylogenetically-informed (e.g., the 52 
examination of the effect of precipitation on the evolutionary relationship between temperature 53 
and size across species). In the latter case, the influence of shared evolutionary history needs to 54 
be accounted for through the modification of the variance-covariance matrix of the taxa involved 55 
in the analysis (Revell, 2010; Symonds and Blomberg, 2014). 56 
 57 
Regardless, a significant interaction term in either type of model provides evidence of an effect 58 
of the moderator on the relationship between the dependent variable and the predictor. Once this 59 
is confirmed, more information about the nature of the interaction can be obtained by looking at 60 
the model coefficients. Let us consider the first example (trait ~ size * sex). If the interaction 61 
term is significant and presents a positive coefficient a researcher would now know that the slope 62 
of the trait ~ size relationship is significantly higher for one of the sexes. Similarly, if we obtain a 63 
significant interaction term in the second example (size ~ latitude * precipitation) with a negative 64 
coefficient, one could infer that the slope of the size ~ latitude relationship becomes more 65 
negative (or less positive) as precipitation increases.  66 
 67 
However, even with this information the significant effect of an interaction might have relevant 68 
biological implications that are not immediately obvious. For example, males might have a 69 
steeper allometric slope than females for a given trait based on our inference of a significant 70 
interaction, but this does not eliminate the possibility that males and females might not be 71 
different in shape at large (Figure 1A) or small sizes (Figure 1B), or even that they might not 72 
significantly differ in shape at any size value that is biologically relevant (Figure 1C). Moreover, 73 
in Figure 1A and 1B we cannot statistically conclude that, overall, one sex has relatively larger 74 
trait values than the other, even though the visualization of the data suggests this is the case at 75 
least for most of the size range. The reason is that the assumption of homogeneity of slopes, 76 
necessary to compare groups when performing analyses of covariance (i.e., ANCOVA), is not 77 
met when the interaction term is significant (Sokal and Rohlf, 2012). Similarly, precipitation 78 
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might have a significant and negative modulatory effect on the relationship between size and 79 
latitude. However, with this information alone one cannot know the precipitation values for 80 
which the size ~ latitude relationship is significant (Figure 1D, E). It is also possible that, despite 81 
precipitation affecting the slope of this association, the size ~ latitude relationship stays 82 
significant for all realistic precipitation values (Figure 1F). In either case, the examination of 83 
coefficients when obtaining a significant interaction term might be insufficient to interpret an 84 
interaction model and obtain useful statistical conclusions, evidencing the need for better 85 
analytical and visualization techniques. 86 
 87 

 88 
 89 

Figure 1. Hypothetical examples where the interactions between the moderator and the predictor are significant. A, 90 
B, and C depict cases where sex, a categorical moderator, influences the relationship between a given trait and size. 91 
In A and B, the trait value is larger in one sex than in the other, but because of the slope difference between sexes 92 
the difference in trait values might be non-significant at some unknown values of size (here depicted as grey 93 
regions). In C, the interaction between sex and size is also significant, but the different slopes do not result in 94 
significant differences between sexes for any biologically relevant value of size. In D, E, and F, precipitation, a 95 
continuous moderator, has a significant effect on the relationship between size and latitude. In D, the relationship 96 
between size and latitude is significant at high (blue) and low (brown), but not intermediate levels of precipitation 97 
(dotted lines). In E, the association between size and latitude is only significant and negative when precipitation is 98 
high. In F, the relationship between size and latitude stays positive and significant regardless of precipitation level, 99 
although it significantly influences the slope of the relationship. In D–F, solid and dotted lines represent significant 100 
and not significant size ~ latitude associations, respectively. 101 
 102 
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The Johnson-Neyman technique: available software, and limitations 106 
 107 
The Johnson-Neyman technique (Johnson and Neyman, 1936; Johnson and Fay, 1950) is a 108 
method that allows a more thorough examination of interaction effects. Originally developed to 109 
account for the effect of a categorical moderator, it allows the identification of a range of 110 
predictor values for which the interaction between predictor and moderator results in non-111 
significant differences in the dependent variable between categories (White, 2003; Huitema, 112 
2011). For instance, it would allow one to identify size values for which trait differences between 113 
males and females are not significant in figures 1A and 1B (indicated by grey areas). The 114 
Johnson-Neyman technique has already been employed in empirical research in ecology and 115 
evolution. For example, Hünicken et al (2022) utilized the method to identify regions of non-116 
significance in their allometric analysis of two species of Corbicula clams. They found the clam 117 
species showed different height ~ length relationships (i.e., a significant length * species 118 
interaction). However, despite this significant interaction, the Johnson-Neyman technique 119 
indicated that the two species differed in height only at the extremes of the length distribution, 120 
while differences in height were not significant for most length values (see Figure 4D in 121 
Hünicken et al., 2022). 122 
 123 
The Johnson-Neyman technique has also been expanded to account for continuous moderators 124 
(Bauer and Curran, 2005). Unlike the case with categorical moderators like 'sex' or 'species', one 125 
might be more interested in assessing how a gradual change in variables like precipitation or 126 
temperature affect the relationship between the dependent variable and the predictor (Figure 1D–127 
F). For example, Jaime et al (2022) estimated the rates at which trees in 130 experimental plots 128 
were attacked by bark beetles and how these rates were affected by the climatic distance between 129 
a given plot and the niche optima of the host tree (distancehost) and that of the beetle species 130 
(distancebeetle) (i.e., attack rate ~ distancehost * distancebeetle). The Johnson-Neyman technique 131 
allowed the authors to conclude that, although attack rates decrease with distancehost, this 132 
relationship weakens and even disappears as distancebeetle values increase (see Figure S5 in Jaime 133 
et al., 2022). 134 
 135 
Despite being a relatively unknown method, a number of software have been developed to 136 
perform the Johnson-Neyman technique and its expanded application for continuous moderators 137 
(Preacher et al., 2006; Hayes and Matthes, 2009; Carden et al., 2017; Hayes and Montoya, 2017; 138 
Montoya, 2019; Lin, 2020), the most complete being the R (R Core Team, 2021) package 139 
interactions (Long, 2019), which includes all the functionality provided by other software and 140 
overall includes a wide range of visualization and analysis options. Nonetheless, this and 141 
previous software lack some functions that might prove useful for users exploring model 142 
interactions. Regarding the issue of phylogenetic relatedness, previous methods do not provide 143 
an option to directly incorporate phylogenetic information in the calculation of regions of non-144 
significance, limiting the use of the technique in macroevolutionary studies. Regarding 145 
categorical moderators, other software do not provide an option to visualize regions of non-146 
significance (i.e., values of the predictor for which there are no significant differences between 147 
categories, e.g., Figure 1A–C). Indeed, the uses of the Johnson-Neyman technique for categorical 148 
moderators reported in the literature are usually based on custom-made programming scripts 149 
(e.g., the study on Corbicula clams described above, Hünicken et al, 2022). Finally, regarding 150 
the effect of continuous moderators, the function johnson_neyman of the R package interactions 151 



provides a numerical output as well as a plot showing the association between the value of the 152 
moderator and the slope of the relationship between the dependent variable and the predictor. 153 
Although this type of plot (Figure 2A) resembles the one originally presented by Bauer and 154 
Curran (2005) and has been used to describe interaction effects in the literature (e.g., the study 155 
on bark beetles described above, Jaime et al., 2022), its interpretation is not straightforward 156 
because the relationship between the dependent variable and the predictor (e.g., as in Figure 2B) 157 
is not presented other than through the value of its slope. 158 
 159 

 160 
Figure 2. Hypothetical example of a significant interaction effect between latitude and precipitation and its effect on 161 
body size. Values of precipitation (moderator) that result in non-significant relationships between size (dependent 162 
variable) and latitude (predictor) can be obtained through an extension of the Johnson-Neyman technique. (A) The 163 
output of the method can be visualized as a plot showing the relationship between the slope of the size ~ latitude 164 
association and precipitation values (see Bauer and Curran, 2005 and the R package interactions, Long, 2019). Here 165 
the horizontal thin line represents a slope of zero, the horizontal thick line represents the range of precipitation data, 166 
the red line shows the negative relationship between the size ~ latitude slope and precipitation, the dashed lines 167 
represent 95% confidence intervals, and the vertical dotted lines represent the range of precipitation values that 168 
result in a non-significant size ~ latitude relationship. (B) Alternatively, the different slopes of this relationship 169 
could be illustrated in a size ~ latitude plot, showing how the relationship between size and latitude changes under 170 
the effect of different precipitation values. Both types of plots show the same information (higher precipitation 171 
decreases the value of the size ~ latitude slope, but intermediate values of precipitation result in non-significant 172 
relationships), but B is easier to interpret.  173 
 174 
Here I present the R package JNplots as a solution to fill gaps left by previous software regarding 175 
the calculation and visualization of non-significance regions through the Johnson-Neyman 176 
technique. As will be explained next, JNplots allows the user to calculate Johnson-Neyman 177 
intervals when including categorical or continuous moderators in interaction models, and to 178 
produce graphical outputs that depict them in an intuitive way. It also allows the user to modify 179 
the correlation structure of the data, allowing the consideration of phylogenetic relationships 180 
when calculating Johnson-Neyman intervals.  181 
 182 
JNplots: IMPLEMENTATION AND EXAMPLES 183 
 184 
The JNplots R package can be used to analyse two-way interaction models that exhibit any of the 185 
four characteristics presented above (and their combinations) using the Johnson-Neyman 186 
technique and its variants. Its two basic functions, jnt_cat and jnt_cont, can be used to explore 187 
two-way interactions in which the moderator is categorical or continuous, respectively. Both 188 
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functions allow the analysis of phylogenetically-informed models through the use of the function 189 
gls from the package nlme (Pinheiro et al., 2017). Both functions can be used to calculate and 190 
visualize 'regions of significance' in an intuitive way. Finally, the functions allow plotting 191 
flexibility as they include arguments that are passed on to the R base plot function. JNplots is 192 
publicly available at https://github.com/kenstoyama/JNplots, and depends on the packages ape 193 
(Paradis and Schliep, 2019), nlme (Pinheiro et al., 2017), and scales (Wickham and Seidel, 194 
2022), which are downloaded from CRAN during the installation of JNplots. The package can be 195 
installed from github using the following commands: 196 
 197 
devtools::install_github('kenstoyama/JNplots') 198 
library(JNplots) 199 
 200 
Using the following empirical examples, I present possible scenarios in which the functions from 201 
JNplots can be used and provide a detailed walkthrough of their implementation. All the data 202 
needed to reproduce these examples are publicly available from their respective sources and are 203 
also included in the installation of JNplots. 204 
 205 
Example 1: head length allometry in two lizard species 206 
 207 
Data from this example comes from the study of Toyama et al (2018). In the original study the 208 
authors tested whether ontogenetic changes in the diet of a lizard (from insectivory to herbivory) 209 
corresponded to changes in its morphology (from slender to robust heads). As part of their 210 
analyses, the authors compared the head shape allometry of the semi-herbivorous species to other 211 
congeners that showed mainly insectivorous habits throughout their life (see Figure 4 in Toyama 212 
et al., 2018). Using their original data, I compared the relationship between head length and body 213 
size in a pair of these species: Microlophus thoracicus, a semi-herbivore species, and M. 214 
peruvianus, a species that rarely includes plant material in its diet. 215 
 216 
I prepared a subset of the original dataset (dataset 'microlophus', included in JNplots), which 217 
included data on body size (measured as SVL (snout-vent-length) in millimetres), head length 218 
(also in mm), and species. Measurements were log-transformed. Since the moderator in this case 219 
is categorical (i.e., species), I proceeded to test for a possible two-way interaction between 220 
species and size (i.e., head length ~ size * species) using the function jnt_cat. The only necessary 221 
arguments in jnt_cat are the names of the predictor (X), the dependent variable (Y), and the 222 
moderator (m). They are added to the function as character strings. The dataset also needs to be 223 
specified: 224 
 225 
jnt_cat(X='svl', Y='hl', m='species', data=microlophus) 226 
 227 
Notice that the character strings must coincide with the column names in the dataset 228 
'microlophus'. These four arguments are the minimum needed for the function to work. The 229 
output of the function consists in the summary table of the two-way interaction model (head 230 
length ~ size * species), and the lower and upper limits of the region of non-significance (i.e., 231 
values of the predictor for which the difference between categories is not significant) (Table 1). 232 
The function also produces a plot showing the association between the dependent variable (e.g., 233 
head length) and the predictor (e.g., size), with the two categories (e.g., species) represented by 234 



different symbols and/or colors, and regression lines for each individual category based on the 235 
output of the interaction model (Figure 3). 236 
 237 
This re-analysis of the data using jnt_cat indicated that the interaction between sex and size was 238 
significant (t = -5.499, p < 0.001), and evidenced the existence of a region of non-significance 239 
along the examined size range (Figure 3). Specifically, the results indicated that the head lengths 240 
of both species are not significantly different for individuals with log(SVL) values between 4.13 241 
and 4.33 (approximately between 62.33 and 75.63 mm). 242 
 243 

 244 
Figure 3. Graphical output of a model relating head length to body size (SVL) and its interaction with species of 245 
Microlophus lizards (model: head length ~ body size * species) obtained with the function jnt_cat from JNplots. 246 
Solid and dashed lines represent head length ~ body size relationships for individuals of each of the two species 247 
(also represented by closed and open circles), as shown in the legend. These relationships were obtained from the 248 
output of the interaction model. Grey area represents the non-significance area calculated with the Johnson-Neyman 249 
technique. Data obtained from Toyama et al (2018) and available to use with JNplots. 250 
 251 
In this particular case, the calculation of regions of non-significance using jnt_cat provided 252 
predictor (size) values that defined regions where differences between categories (and lack 253 
thereof) are statistically supported, which provides more rigor when interpreting the results of an 254 
interaction model. At this point is worth mentioning that regions of non-significance can exist 255 
and be relevant for the data of study despite the interaction term being non-significant (Rogosa, 256 
1980, 1981; Bauer and Curran, 2005), thus it might be worth performing the Johnson-Neyman 257 
technique regardless of the significance of the interaction term. 258 
 259 
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Table 1. Two-way interaction fitted models obtained with JNplots for three empirical examples. Significant p-values 261 
are shown in bold. The limits of significance obtained using the Johnson-Neyman technique (min JN value and max 262 
JN value) and the minimum and maximum values found in the data (min value data and max value data) are shown 263 
at the bottom of each table. In the first example the moderator is categorical and these limits refer to values of the 264 
predictor (e.g., for which predictor values are the differences between moderator categories non-significant?), while 265 
in the second and third examples the moderator is continuous and these limits refer to values of the moderator (e.g., 266 
for which moderator values is the relationship between the dependent variable and the predictor (non)significant?).  267 
 268 

Microlophus lizards    
 Coefficient t-value p-value 

Intercept -1.79 -6.83 <0.001 

log(SVL) 1.06 17.57 <0.001 

species 1.59 5.47 <0.001 

log(SVL) x species -0.38 -5.50 <0.001 

 
   

min JN value max JN value min value data max value data 
4.133 4.326 –– –– 

 
   

Lizard home range    

 Coefficient t-value p-value 

Intercept 4.26 23.56 <0.001 

overlap 1.77 9.11 <0.001 

network -0.07 -0.39 0.700 

overlap x network 0.86 6.13 <0.001 

 
   

min JN value max JN value min value data max value data 
-3.296 -1.360 -2.169 2.481 

    
Bird coloration    

 Coefficient t-value p-value 

Intercept 0.32 18.40 <0.001 

precipitation -5.03E-05 -5.13 <0.001 

temperature -4.40E-06 -0.007 0.9947 

precip. x temp. 1.30E-06 2.80 0.0056 

    
min JN value max JN value min value data max value data 

31.106 84.853 1.7 27.5 
 269 
 270 
 271 
 272 
 273 
 274 



Example 2: drivers of home range size in a lizard 275 
 276 
Data from this example comes from the study of Payne et al (2022a). In the original study, the 277 
authors were interested in uncovering the factors influencing the home range size (i.e., the area in 278 
which an individual interacts with the environment) of individuals of the lizard species Tiliqua 279 
rugosa. One of their main results indicated that the size of the home range of an individual 280 
increases with its degree of overlap with the home range of their neighbours. Additionally, this 281 
relationship is stronger for individuals that interact with more neighbours (i.e., degree of social 282 
network). 283 
 284 
I prepared a subset of the data (dataset 'lizard_home_range', included in JNplots, see Payne et al., 285 
2022b for original dataset) that included information on the home range size of each individual 286 
('hrsize95'), degree of overlap ('PHR95_overlap-z'), and social network degree ('degree_z'). To 287 
analyze the two-way interaction between overlap and degree of social network (i.e., home range 288 
size ~ overlap * social network) I used the function jnt_cont, as the moderator (i.e., degree of 289 
social network) is continuous. As with jnt_cat, the necessary arguments for the function are the 290 
names of the predictor (X), the dependent variable (Y), and the moderator (m) as they appear in 291 
the dataset, which also needs to be specified: 292 
 293 
jnt_cont(X='PHR95_overlap_z', Y='hrsize95', m='degree_z',            294 

data=lizard_home_range) 295 
 296 
As with jnt_cat, the output of the function consists in the summary table of the two-way 297 
interaction model (home range size ~ overlap * social network), the values of the moderator that 298 
represent the limits between significance and non-significance, and the minimum and maximum 299 
moderator values in the data (Table 1). The function also produces a plot showing the association 300 
between the dependent variable (e.g., home range size) and the predictor (e.g., overlap) (Figure 301 
4). However, when the moderator is continuous the interpretation of the interaction effect differs 302 
from the output of jnt_cat. In this example, and in agreement with the original study, home range 303 
size increases with overlap. However, the degree of social interactions has a positive effect on 304 
this relationship (i.e., the positive effect of overlap on home range size is stronger for lizards that 305 
interact more with neighbours). This positive effect is represented by multiple regression lines 306 
plotted in the output figure (Figure 4). The multiple grey regression lines that constitute the grey 307 
'area' represent regressions fitted using moderator values that are outside the range of 308 
significance, i.e., values of the moderator that make the relationship between the dependent 309 
variable and the predictor not significant. (Figure 4). The 'area' in color consists of multiple 310 
regression lines that represent models fitted using moderator values that fall within the 311 
significance range (i.e., moderator values for which the relationship between the dependent 312 
variable and the predictor is significant). The significant regression lines are colored in a blue-313 
red gradient that represent lower and higher moderator values, respectively, illustrating how 314 
changes in the magnitude of the moderator (i.e., degree of social network) affect the relationship 315 
between home range size and overlap (Figure 4). The plot also shows two additional lines. The 316 
solid and dashed black lines represent fitted models that use the maximum and minimum values 317 
of the moderator in the data, respectively. This aids in the interpretation of the plot because not 318 
all moderator values might be relevant for the study system or the data at hand. 319 
 320 



In this example, a higher degree of social interactions (moderator) increases the slope between 321 
home range size (dependent variable) and overlap (predictor) (Figure 4). However, a low degree 322 
of social interactions (specifically below a value of -1.360, Table 1) makes that relationship not 323 
significant, keeping home range size small regardless of the degree of overlap (grey area in 324 
Figure 4). Importantly, some moderator values that would result in non-significant relationships 325 
are found in the data, suggesting that this result is biologically relevant (see grey regression lines 326 
between solid and dashed black lines in Figure 4).  327 
 328 

 329 
Figure 4. Graphical output of a model relating home range size to home range overlap and degree of social network 330 
in the lizard Tiliqua rugosa (model: home range size ~ overlap * social network) obtained with the function jnt_cont 331 
from JNplots. Colored lines represent significant linear models obtained using different 'degree of social network' 332 
values, the blue-red gradient represents different degrees of social network going from low to high, respectively. 333 
Grey lines represent non-significant linear models. Solid and dashed black lines represent the maximum and 334 
minimum precipitation values from the dataset, respectively. Data obtained from Payne et al (2022b). 335 
 336 
Example 3: drivers of coloration in birds 337 
 338 
Data from this example were originally described in a study by Marcondes and Brumfield (2019) 339 
and reanalysed in a follow-up study (Marcondes et al., 2021). In the latter study, the authors 340 
assessed how climatic variables and light environments influence the plumage coloration of bird 341 
species of the family Furnariidae. Among other findings, the authors found that the brightness (a 342 
proxy for overall melanin content, with less bright plumage patches having less melanin) of the 343 
back plumage was negatively related to precipitation. Furthermore, an interaction between 344 
temperature and precipitation was detected, indicating that the negative effect of precipitation on 345 
brightness is stronger when temperature is lower (see Figure 1A in Marcondes et al., 2021). 346 
 347 
I reanalysed a subset of the data used by Marcondes et al (2021) (dataset 'birds_colors', included 348 
in JNplots, original data by Marcondes and Brumfield, 2021 and Seeholzer et al., 2017) using the 349 
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jnt_cont function as in the previous example. The model of interest in this case was brightness ~ 350 
precipitation * temperature. However, in contrast to the previous example, this analysis implies 351 
the non-independence of datapoints due to phylogenetic relationships. To account for this, I used 352 
the argument 'correlation' in jnt_cont. The argument 'correlation' specifies the correlation 353 
structure of the model (as one would do in the gls function of nlme). Phylogenetic correlation 354 
structures (e.g., 'corBrownian', 'corPagel', 'corBlomberg', etc) in turn need a phylogeny to be 355 
specified. Here I chose 'corPagel' as the correlation structure and used a phylogenetic tree of the 356 
Furnariidae ('tree_Furnariidae', also included in JNplots, Harvey et al., 2020), selecting '1' as the 357 
initial value of lambda (see Paradis and Schlieb, 2019, for details on using different correlation 358 
structures):  359 
 360 
jnt_cont(X='bio12', Y='back_bright', m='bio1', data=bird_colors,  361 
         correlation=corPagel(1, tree_Furnariidae)) 362 
 363 
The output of jnt_cont showed that, in agreement with the original study, plumage brightness 364 
decreased with precipitation and the interaction between temperature and precipitation was 365 
significant (Table 1). Specifically, the effect of precipitation on brightness was stronger at lower 366 
temperatures. The limits of significance represented in the plot confirmed this pattern and also 367 
showed that the statement is generalizable for the entire range of temperature values experienced 368 
by species in the data, as it completely overlaps with the region of significance (Figure 5).  369 
 370 

 371 
Figure 5. Graphical output of a model relating back plumage brightness to precipitation and temperature in 372 
Furnariidae bird species (model: brightness ~ precipitation * temperature) obtained with the function jnt_cont from 373 
JNplots. Colored lines represent significant linear models obtained using different temperature values, the blue-red 374 
gradient represents different temperatures going from low to high, respectively. Grey lines represent non-significant 375 
linear models. Solid and dashed black lines represent the maximum and minimum precipitation values from the 376 
dataset, respectively. Data obtained from Marcondes and Brumfield (2021). 377 
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CUSTOMIZATION OF GRAPHICAL OUTPUTS IN JNplots 378 
 379 
One of the main aims of JNplots is to provide graphical outcomes that allow the user to interpret 380 
interaction models in an intuitive way. To aid in this objective, the graphical outputs of its 381 
functions allow for some aesthetic flexibility.  382 
 383 
In the case of jnt_cat the regions of non-significance might not overlap the predictor values in 384 
the data. This would result in the region of non-significance not appearing or only partially 385 
appearing in the graphical output. Specifying the option 'plot.full = T' ('plot.full' defaults to F) 386 
will result in the plot always showing the entire region of non-significance regardless of its 387 
overlap with the predictor values of the data (compare Figure 6A and 6B). Other basic aspects of 388 
the plot that can be modified are the symbols representing both categories (default: pch = 389 
c(16,1)), colors (default: cols = c('black', 'black')), line types (default: lty = c(1,2)), line widths 390 
(default: lwd = c(1,1)), and line colors (default: line.col = c('black', 'black')). As an example, 391 
compare Figure 6A, which uses only default settings, and Figure 6C. 392 
 393 
Plotting characteristics can also be specified in jnt_cont. The user can control the relative number 394 
of regression lines to be plotted with the argument 'res', which defaults to 100. The exact number 395 
of lines to be plotted is equal to the value of 'res' – 1, meaning that the number of plotted 396 
regressions increases with the value specified in 'res' (Compare Figure 6D and 6E, which have 397 
'res' values of 80 and 40, respectively). The gradient of colors shown by the significant 398 
regression lines can also be modified. The arguments 'max_col_grad' and 'min_col_grad' define 399 
the colors of the regression lines when using the maximum and minimum moderator values that 400 
result in significant relationships, respectively. The colors of the regression lines in-between will 401 
form a gradient between the extreme colors ('max_col_grad' and 'min_col_grad' default to 'red' 402 
and 'blue', respectively). For example, compare Figure 6D and Figure 6F. If a color gradient 403 
indicating different moderator values is not desired then 'col.gradient = F' (defaults to T), and all 404 
the lines representing significant fitted regressions will take the color specified in the argument 405 
'sig_color', which defaults to 'lightblue' (Compare Figure 6G and 6H). The color of the non-406 
significant regression lines can also be specified in the argument 'nonsig_color' (defaults to 407 
'grey'). 408 
 409 
Finally, as previously mentioned, the correlation structure of the data can be modified in both 410 
jnt_cat and jnt_cont. Although this is not an aesthetic specification, changing the correlation 411 
structure will most likely change the aspect of the graphical outcome of either function. For 412 
example, compare Figure 6G and 6I, which use Pagel’s lambda and Brownian motion correlation 413 
models, respectively. 414 
 415 



 416 
Figure 6. Graphical flexibility of JNplots. (A) jnt_cat was applied to a head height ~ size * species model. (B) Here 417 
the argument 'plot.full' was changed to 'T', which allows to see the entirety of the non-significance region regardless 418 
of the range of the predictor values. (C) Here plot.full = F, but other arguments were modified to change the 419 
aesthetics of the plot (pch = c(16,17), cols = c('dodgerblue2', 'darkolivegreen4'), lwd = c(2,2), line.col = 420 
c('dodgerblue2', 'darkolivegreen4')). (D) Same as figure 4, jnt_cont was applied to the model home range size ~ 421 
overlap * network. (E) Here the argument 'res' was specified to be 40 (default = 100). Notice the lower number of 422 
regression lines and the larger space between them. (F). Here res = 80, and gradient colors are changed specifying 423 
min_col_grad = 'yellow' and max_col_grad = 'red'. (G) Same as figure 5, jnt_cont was applied to the model 424 
brightness ~ precipitation * temperature, res=150, correlation = corPagel(1, tree_Furnariidae). (H) Argument 425 
col.gradient = F and sig_color = 'lightblue'. The argument sig_color is only considered when col.gradient = F and 426 
defines a single color to be used for all significant regression lines. The argument nonsig_color works similarly for 427 
non-significant regression lines. (I) In this case the correlation structure is based on a Brownian motion model of 428 
evolution (correlation = corBrownian(1, tree_Furnariidae). 429 
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CONCLUSIONS 430 
 431 
Multiple model testing is common in ecological and evolutionary studies, and understanding 432 
how variables included in such models interact is indispensable for their interpretation (Hilborn 433 
and Stearns, 1982; Dochtermann and Jenkins, 2011; Spake et al., 2023). Although the Johnson-434 
Neyman technique was initially developed in the context of educational and psychological 435 
studies (Johnson and Neyman, 1936; Johnson and Fay, 1950), its application to other fields is 436 
evident (e.g., White, 2003), as was the need to expand its application beyond categorical 437 
moderators and two-way interactions (e.g., Bauer and Curran, 2005). In the same vein, JNplots 438 
aims to be a tool that facilitates the application of the method in ecological and evolutionary 439 
studies through the direct implementation of phylogenetic corrections and the possibility to 440 
analyze categorical and continuous moderators, thus going beyond what is possible with existing 441 
software. Equally important, JNplots aims to aid in the interpretation of two-way interactions 442 
through more intuitive graphical outputs. 443 
 444 
Although its main functions are readily available, JNplots still has room for expansion. For 445 
example, the Johnson-Neyman technique can be applied to three-way or higher-level interactions 446 
(Pothoff, 1964; Hunka, 1995; Hunka and Leighton, 1997; Curran et al., 2004; Bauer and Curran, 447 
2005). Other types of regressions, like type II or reduced major axis regressions, and even non-448 
linear models also represent alternatives to traditional linear models not yet included as 449 
analytical options in this package. These and other variations in the analysis of interactions 450 
remain to be implemented in JNplots (or any other software). Before then, users interested in 451 
such variations are free to copy and modify the functions from JNplots 452 
(https://github.com/kenstoyama/JNplots) and adapt them to their needs. 453 
 454 
Together with the release of this package, I provided a quick start guide online 455 
(https://kenstoyama.wordpress.com/2023/04/28/jnplots-quick-guide/) for users that are more 456 
familiar with the Johnson-Neyman technique and are specifically interested in the numerical and 457 
graphical outputs of JNplots. The same page can be used to report issues with the use of the 458 
package.  459 
 460 
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